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Introduction

Despite exponentially increasing computer resources and
optimized software, there is a chronic shortage of CPU time
– because simultaneously expectations and demands on the
quality of the results and their presentation are also strongly
increasing. Particularly, for scientific problems that depend
on several parameters and that have to be solved by con-

struction of multidimensional hypersurfaces via computer
simulations, the required calculation time is usually the limit-
ing factor.

The quality of the approximation to the unknown n–di-
mensional function depends on two factors: on the one hand,
the exactness depends on the significance and quality of the
calculated function value for a particular “node”[1] required
for the generation of the function. This, e.g. in the case of
chemical potential energy surfaces (PES), might be attained
by using a larger basis set in quantum chemical procedures.
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On the other hand, it is important how well the “ensemble”,
i.e. the set of chosen points, represents the actual function.

A current and pragmatical method for the generation of
such hypersurfaces is the commonly used “GridSearch” [2]
algorithm. In this procedure, the range of definition is ex-
plored by scanning along parallels of the coordinate axes in
equidistant steps. GridSearch, which is very easy to imple-
ment algorithmically, generates a regular grid over the inter-
esting area and determines the function value at each lattice
point (Figure 1).

The advantage of the procedure, to address the next node
to be measured rapidly with a minimum decision overhead, is
only relevant for problems for which the calculatory expense
per calculated (or measured) node is very small. For nodes
that consume a large amount of computational time, the strat-
egy even turns out to have grave disadvantages: Only after
having completed the scanning process does it become mani-
fest whether unnecessary calculations were performed for some
parts of the surface, or, vice versa, whether other parts were
not sufficiently scanned.

In every day computer–chemistry, the demands on poten-
tial energy surfaces (PES) may vary greatly, depending on the
particular problem: Whereas in some cases only energetic mi-
nima on the surface (i.e. molecular conformations) are im-
portant for further investigations, it is, in other cases, only the
saddle points (i.e. the transition states between two stable
ground state geometries) that are of interest. Still more de-
mandingly, for the calculation of nuclear wave functions [3] a
highly accurate PES is necessary.

In the literature [4], there is so far no specific method for
the construction of PES that delivers a surface with a pre–
defined exactness based on a minimum number of measured
nodes, or, alternatively, that allows a stepwise enhancement
of precision at any time of the process, either for parts or for
the whole area of definition, relying on the already determined
points.

Figure 1: Three versions of GridSearch to go through the
definition area for the two-dimensional space defined by the
parameters P1 and P2.

In this paper, we present a fundamentally novel proce-
dure, named AdaptivSearch, which is capable of adapting
itself iteratively to the problem. It selectively explores the
strategically important parts of the potential energy surfaces
preferentially. The AdaptivSearch algorithm thus allows the
most effective possible use of the given computational re-
sources.

Fundamental principle and mathematical description of
AdaptivSearch

We have developed the AdaptivSearch method for the fast
and rational computation of multi-dimensional hypersurfaces
by an adaptive approach. During a typical AdaptivSearch
run, the set of nodes of the problem domain already com-
puted is enhanced iteratively by calculating new nodes ac-
cording to a problem-specific error criterion. Within each
iteration, a Delauney triangulation [5] of the existing set of
nodes is constructed. The error criterion can then be com-
puted for each triangle.

The triangulation approximation problem (TAP)

Throughout this work the task of generating n-dimensional
hypersurfaces will be treated as an iterative approximation
problem that can be stated in a general way as follows:

Let f : Ω → R  be a function of n variables x 
1
 ...x

n 
in the

n-dimensional problem domain Ω. The triangulation approxi-
mation problem (TAP) is to determine a set of interpolation

nodes 
r

xi   ∈ Ω and a triangulation T  based on these nodes,

so that the piecewise linear, continuous approximation func-
tion g with ∀i :

( ) ( )g x f xj j
r r=

!

is an approximation for f minimizing the

global error with respect to a certain error norm.
Hereby the triangulation T of Ω is defined as a set of

triangles underlying two conditions [6]:
1. Within each pair of triangles only one edge or one

node overlaps.
2. The union of all triangles equals Ω.
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A practical error norm definition is, e.g. the L2 norm,
where ∫( f – g )2 dx is minimized during the iterative
TAP solution process.

Assumptions and restrictions

Function f has two continuous derivatives. This can be as-
sumed for physical reasons, as well as from a correct choice
of the parametric space.

Two-dimensional problems. Although the AdaptivSearch
method will work for approximation problems independent
of their spatial dimension, the following explanations will
be based on the two-dimensional case in order to keep the
algorithm description simple and understandable. Some com-
ments on problems of more than two dimensions will be
given in the paragraph “Multi–dimensional problems”.

Costly function evaluation. The approximation of func-
tion f is necessary because of the computational expense of
evaluating individual values of f . Taking this assumption
into account, a small fraction of this computational time can
be used for the AdaptivSearch strategy itself.

Algorithmic overview

Solving the TAP with AdaptivSearch is basically an iterative
method, with the number of nodes increasing during the it-
eration process. Within each iteration, a Delauney triangulati-
on [5] of the existing set of nodes is constructed. A local
error criterion is then used to find the nodes to be evaluated
next. Scheme 1 describes the AdaptivSearch algorithm in
more detail.

In the case of a rectangular problem domain (i.e. a two-
parameter problem), the starting set (line 01) may contain
only the four nodes in the corners of the domain. As an alter-

native, a larger set of nodes from a prior computation may be
used (evaluation recycling).

During the main loop (lines 03-11), at first the new nodes
are evaluated, which normally takes the largest part of the
computational time. After this step (lines 04-06), the actual
AdaptivSearch strategy is executed. For this purpose, a
Delauney triangulation is constructed to obtain an approxi-
mation for f based on ∪

i
 P

i
 , which is the set of all nodes

computed so far. The Delauney triangulation T
i
 is a triangula-

tion (as defined above) based on an additional geometric con-
dition [5] concerning the numerical stability.

In order to obtain a list of nodes to be computed next, the
triangles have to be sorted according to an error criterion.
This criterion is applied to each triangle to evaluate the qual-
ity of the current approximation of f (line 08; for details, see
paragraph “Error criteria” ).

As a last step during each iteration, the barycenters of the
worst triangles are chosen as new nodes (line 09). In order to
ensure consistency at problem domain boundaries, additional
new nodes are generated at the boundary edge midpoints of
all chosen triangles.

Finally, the next iteration begins with the computation of
all new nodes P

i+1
 . The algorithm ends as soon as P

i
 is empty,

i.e. when no further triangles are chosen or the upper limit of
nodes has been reached.

The AdaptivSearch method is based on a triangulation
discretization, which is similar to well–known finite–element
methods used for the solution of partial differential equation
problems (for general introductions, see [7, 8]; for an applica-
tion in the computational chemistry field, see [9]). The kind
of adaptive refinement being applied in each of the two meth-
ods, however, differs in its triangulation lifetime: during adap-
tive finite-element computations [10], a sequence of triangu-
lations is constructed by refinement of certain triangles from
the previous, coarser mesh. Because of the comparatively low
computational effort per node during the iteration scheme, it
is necessary to reuse existing grids. Thus, the majority of topo-
logical information describing the grids can be kept during
the computation process. With Adaptiv-Search, the computa-
tional time per node is much higher, therefore one can afford
to create all triangulations from scratch. Hence, in each
AdaptivSearch iteration the optimal triangulation can be used.

Error criteria

Figure 2 shows the two main strategic aspects of Adaptiv-
Search. The local error criterion is applied to each element
of the triangulation as a measure for the local quality of the
approximation. Afterwards, all elements are sorted according
to this local quality measure. Finally, the global strategy de-
cides how many new nodes will be chosen, starting from the
top of the sorted list.

These two aspects are mutually dependent because they
alternate during the iteration process. For a wide range of TAP
problems (especially for those fromthe field of computational

Algorithm AdaptivSearch

01: Determine set of starting nodes P0

02: Set iteration count i =  0
03: While Pi ≠ ∅
04: For each xj ∈ Pi

05: Compute f(xj)
06: End For
07: Create triangulation Ti on ∪iPi

08: Compute local errors on Ti

09: Determine set of new nodes Pi+1

10: Next iteration: i = i + 1
11: End While

Scheme 1: Description of the AdaptivSearch execution
scheme in detail
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Figure 2: Schematic outline for generating the sorted list of
“worst” triangles; the user can determine how many triangles
are to be refined.

chemistry presented here), the following strategy has proved
to be most effective and generally applicable:

Local error criterion:
For each triangle i the local error is computed using the
neighbor gradients ∇j with j ∈ nb

i
 ,where nb

i
 is the set of

neighbors of i. With λ(i) being the xy-projected volume of
triangle i, the local error is given by

( ) ( )errorlocal

i jj nb

i

i
nb

ii=
∇ − ∇∈∑

#
λ

Global strategy:
Only the triangle with the worst local error is chosen for the
generation of the next nodes. Its barycenter is the first new
node. If the edge of the corresponding triangle is a boundary
of Ω, its edge mid points are chosen as additional further nodes.

Parallel Processing

The current AdaptivSearch prototype consequently has been
implemented in a modular manner using several standard soft-
ware components. Furthermore, embedding it into a typical
UNIX-compatible environment allows the usage of suitable
network features including complete support for utilizing het-
erogeneous computing environments.

Three different scenarios representing possible types of
parallelism may be used without modification of
AdaptivSearch:
1. Fine-grain parallelism: Clusters of workstations as avail-

able in most computational chemistry labs may be used
for the evaluation of single nodes: Programs with highly
parallellized subroutines (e.g. for the solution of
eigenvalue problems or for the filling of large matrices,
etc.) serve as black–box evaluators for nodes instead of
the sequential program versions on one single proces-
sor.

2. Node parallelism: The evaluation of all nodes in the cur-
rent set P

i
 can be tackled com-pletely in parallel (“Al-

gorithmic Overview”, line 04-06). Different global strat-
egies (see paragraph above) for determining the sets Pi

can be used in order to adjust the necessary degree of
parallelism.

3. Task parallelism: For each single node, two or more
evaluations may be computed with slightly different
starting molecule geometries. This can be used for han-
dling anomalies which occur when modeling high–di-
mensional problems with low–dimensional parameter
sets [12]).

All three approaches maybe used simultaneously for dis-
tributed computations in a typical computer center environ-
ment. Thus, the central AdaptivSearch strategy manages the
solution process by exploiting the power of high perform-
ance computing hardware combined with fast network con-
nections.

Multi–dimensional problems

Most parts of the algorithm described above can be applied
easily to the solution of problems in more than two spatial
dimensions. Only the postprocessing facilities and the trian-
gulation algorithm will not be usable for higher dimensional
problems. Although visualization of solutions in three and
more space dimensions is an important issue, it will not be
considered further in this paper, but will be described later.

Triangulation algorithms for 3D data may be adapted
from well-known grid generation research from Computa-
tional Fluid Dynamics. In this case tetrahedra are created
covering the complete 3D problem domain.

Problems in four and more space dimensions requiring
additional efforts for the triangulation [11] and visualiza-
tion are subject to current research.

Application of the algorithm

As mathematically depicted above, AdaptivSearch differs
distinctly from other methods: For the search of new nodes,
it neither follows an anticipated and thus rigid strategy such
as e.g. for “GridSearch”, nor is the decision which node is to
be calculated next left to chance as is typical for the
RandomSearch approach [13]. Per each iteration step,
AdaptivSearch discretizes the definition area into polyhe-
dral partial areas according to the already calculated nodes
and subsequently evaluates each of those polyhedra relative
to the neighboring areas using the “gradients difference cri-
terion” (see “Error criteria” ). The specific shapes of these
partial areas are triangles for two-dimensional space, tetra-
hedra for three-dimensional space, etc. According to its defi-
nition, the error criterion can be interpreted as a sort of dis-
crete 2nd average derivative. Thus, with  each refinement
step, AdaptivSearch rapidly elaborates more and more de-
tailed information of the behavior of the unknown
hypersurface by advancing preferentially into those areas in
which the curvature of the hypersurface changes strongly.
Likewise, from small amounts of local errors, AdaptivSearch
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is capable of recognizing in which parts of the definition
range the gradient of the energy function is relatively con-
stant and where consequently the function may feasibly be
described by a piecewise linear approximation.

In order to demonstrate the scope and limitations of
AdaptivSearch, we have chosen seven analytical model func-
tions with different properties and have probed, i.e. scanned,
them using AdaptivSearch. Exemplarily for the first three
chosen functions (examples 1–3 in “Analytical functions”),
we focus on the general behavioral patterns and characteris-
tics of the algorithm. As AdaptivSearch was initially devel-
oped primarily for the investigation of chemically relevant
potential energy surfaces (PES), we wish to show the broad
applicability of this procedure for the solution of chemical
problems exemplarily using the functional model surfaces 4-7
(“Chemical model surfaces”).

By adding the error values over all partial areas and di-
viding by the number of triangles, one obtains a value for
the average error of the approximation, in the following de-
noted as erroravr. With increasing number of nodes, the qual-
ity of the approximation to the function is enhanced and the
erroravr decreases. Interestingly, for AdaptivSearch the de-
crease of error

avr 
can be described by a polynomial relation.

This becomes evident when plotting error
avr 

against the
number of calculated nodes in a doubly logarithmic diagram,
which results in a straight line that may be formulated as

p = a · q + b;

from which, by simple transformations (p → ln(error
avr

),
q →€ln n),

( )ln ln

ln

ln ln

error

error

avr

avr
a n b

b a b n

a n b

e

e e e e
a

= ⋅ +

= =

= ⋅ = ⋅

⋅ +

the hyperbolic relation

erroravr
b ae n= +

can be obtained. Figure 3 illustrates this relation for the ex-
ample function no. 1. The coefficients a and b, i.e. the gradi-
ent of the straight line and the intersection point with the y-
axis, can be read from a regression line, which can be ob-
tained after calculation of only a few (15–20) nodes. This al-
lows the straightforward possibility of easily predicting the
number of further iteration steps required to reach a desired
quality of the hypersurface investigated relative to the built–
in error criteria.

We show by means of the 7 example functions how well
this built–in error measurement corresponds to the real error
of approximation. For this purpose, it is useful to regard the
difference volume between the approximation and the actual
function as a measure for the actual error, which is denoted as
errorvol in the following. When error

vol
 is plotted against the

number of calculated points in the manner described above,
astonishingly the following empirical relation was found (see

        gradients
function no. error

avr
error

vol ∆∆∆∆∆

1 -1.748 -1.264 0.484
2 -1.357  -0.876 0.481
3 -1.503 -0.997 0.506
4 -1.542 -1.058 0.484
5 -1.619 -1.080 0.539
6 -1.545 -1.034 0.511
7 -1.611 -1.071 0.540

n = 0.506

Figure 3. Plotting the error(avr) value (full line) against
the number of calculatednodes one gets a straight line. This
is shown exemplarily for the example function no. 1. When
the error(vol) is plotted in the same way (dotted line), one
also gets a straight line, but with a slightly smaller gradient.

ln n

ln(erroravr)
ln(errorvol)

Table 1. Gradients of the regression lines obtained by plotting
error

avr
 and error

vol
 against the number of calculated nodes n

in a doubly logarithmic diagram. Whereas the absolute values
of the gradients expressing the expenditure for AdaptivSearch
may vary greatly, the difference between respective values (last
column) is constant.
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Figure 3, for a complete list of all example functions, see
Table 1).

errorvol
aconst n= ⋅ + 0 5.

where n denotes the number of calculated nodes and a is the
gradient of the regression line from the doubly logarithmic
diagram of error

avr
.

For the deduction of this const. factor, which is needed for
the calculation of the absolute amount of the error

vol 
, we start

with formula (1):

( )errorvol exact
aV n V const n= − = ⋅ + 0 5. (1)

V (n) is the volume at the actual approximation level. In order
to eliminate the exact volume V

exact
, which is unknown in real

cases, we differentiate (1) by n and get:

⇒

( ) ( )
( ) ( )

( ) ( ) ( )

d

dn
V n V

d

dn
const n

dV n

dn
const a n

V n V n n

n
const a n

exact
a

a

a

− = ⋅

− = ⋅ + ⋅

− +
= ⋅ + ⋅

+

−

−

0 5

0 5

0 5

0 05

05

.

.

.

.

.
∆

∆ (2)

=

or

=

=

Figure 4. In order to obtain information on the absolute error
of the approximation, one has to plot the discrete derivative
[see equation (2)] against the number of calculated nodes in
a doubly logarithmic diagram. This simultaneously again
proves the polynomial relation between error(vol) and the
calculated number of nodes.

Figure 5. Subdivision of the local area elements delivered
by Grid Search leading to two different (since concave/
convex) approximations to the unknown function.

By the last step, the infinitesimal derivative is converted
to a discrete one, which is accessible at any time of an
AdaptivSearch run. Again by plotting the term on the left
side against the numer of calculated nodes (shown for ex-
ample function no. 1 in Figure 4) in a doubly logarithmic
diagram, one can extract the missing factor.

Thus at a very early point of the investigation this ap-
proach allows a concrete prediction of theexpenditurerequired
for AdaptivSearch for the exploration of the function up to a
needed or defined accuracy – an inestimably valuable help
for the user, especially for costly nodes.

Although in the following examples the efficiency of
AdaptivSearch is discussed relative to that of the conven-
tional GridSearch method, a direct comparison of the two
algorithms is not possible, as seen for the two aspects de-
scribed below, which constitute both distinct arguments for
AdaptivSearch and against GridSearch.

1. By the scanning process, GridSearch does not deliver
direct and unambiguous information about the ensemble of
elemental areas. This can easily be explained for two–dimen-
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treated identically. Consequently, this already existing lattice
can be further refined only by a fixed (and thus rigid) quantity
of additional nodes. If, nonetheless, by an a posteriori refine-
ment of the discreteness less nodes are chosen, this results in
an arbitrarily inhomogeneous subdivision of the definition area
(Figure 6). Furthermore, the discreteness of a definition area,
e.g. 144 nodes by adding 44 additional nodes to a preformed
10 x 10 lattice, looks completely different from a lattice that
has been calculated from 12 x 12 nodes from the beginning
(Figure 6).

It is already clear at this point that AdaptivSearch will by
no means be restricted to the solution of chemical problems,
but should also be widely applicable to the investigation of
completely different surfaces.

Analytical functions

1. f (x; y) = x2 · y4  with x ∈ {–3:0; 3:0},  y  ∈ {–3:0; 3:0}:

By this exemplary function, we illustrate exhaustively how
a typical AdaptivSearch run looks in practice and what profit
a user can draw from the data and the additional information
that the AdaptivSearch program package delivers during the
search process. While Adaptiv-Search is directing the corre-
sponding calculating program to determine the value of the
next node, the available data are evaluated and stored as data
files. The filed information can be visualized graphically us-
ing standard visualization programs such as GNUPLOT,

sional space: The smallest, i.e. fundamental spatial elements
as obtained by GridSearch are quadrangles (frequently
squares), as defined by the 2D projection of four directly
neighboring nodes of the surface. Still, since four nodes in
the 3D space do not unambiguously define a plane, the quad-
rangles have to be subdivided into two triangles each. As
Figure 5 illustrates, this can be done in two ways (that are
degenerate in the 2D projection), which, however, may de-
liver dramatically different approximations to the functions.

Concretely speaking, the upper solution in Figure 5 (if
evaluated from above) would give rise to a convex curvation
of the approximation surface, whereas the lower one would
give a concave course for this local area element.

Alternatively, by application of an interpolation algorithm
[14] to the resulting grid or by fitting the set of all nodes to
a spline function [15], it is also possible to effect an un-
equivocal, i.e. unique (unambiguous), record from all nodes
calculated so far. However, one risks ending up with a mis-
leading, since arbitrary interpretation of the ensemble as ob-
tained by GridSearch.

This is due to unwanted fluctuations between the data
points or inadequate accuracy of the approximation.

2. For the GridSearch strategy, the calculatory expense
is set from the beginning of the calculation by the definition
of the number of the scanning steps in each direction. An a
posteriori increase of exactness by including further nodes
is problematic. This can meaningfully only be done by a
renewed regular subdivision of the established grid, since
for the GridSearch algorithm all partial areas have to be

100 + 44 = 144 nodes 12 x 12 = 144 nodes

Figure 6. Applying GridSearch, one obtains totally different
discretenesses of the definition area, although an identical
number of nodes have been calculated (here 144). Left:
Arbitrarily refinement of a 10 x 10 lattice by additional 44
nodes; right: a regular grid of 12 x 12 nodes.

Figure 7. (page 8 and 9) Evolution of the approximation
performed by AdaptivSearch to the example function no. 1;
left side: 3D plot;
right side: triangulation of the actual approximation state.
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AXUM, or NCSA–Collage, so that the user can assess of the
actual state at any point of the process.

The shape of the function corresponds to that of a four–
pointed crown. Due to the even exponents of the parameters x
and y, the function is symmetric both relative to the xz and to
the yz plane, but not relative to the bisectors of the quadrants.
When dissecting the function to the axes in parallel, one ob-
tains parabolic curves, which, because of the y4 term, are more
strongly curved and become steeper than those that run in the
x direction.

Figure 7 (left side) illustrates the development of the
AdaptivSearch approximation to the function based on the

Figure 8. A colored contour plot of the Rosenbruck function
(example no. 2) and the AdaptivSearch triangulation after
200 calculated nodes.

nodes already calculated or measured. Figure 7 (right side)
shows the triangulation at the corresponding state of the ap-
proximation. After a small number of measured nodes
(20-25), the gross morphology of the surface is evident, the
subsequent iteration steps only further “polish” the functional
graph.

From the triangulation pattern of the last approximation
step it becomes evident which partial areas have required

Figure 10a. An arbitrary chemical model function
(example no. 4)

Figure 9. Left: The “genuine” example function no. 3; right:
The triangulation of the definition area at the stage of 200
points.

3

2.5

2

1.5

1

0.5

0
0-1-2-3-4-5 1 2

Figure 10b. (next page) Evolution of the approximation to
the arbitrarily constructed chemical model function
(example no. 4).
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from the dark blue spots in the colored contour plots (Fig-
ure 8).

This function is a hard and thus ideal test case for any
algorithm that has particularly been trained to reveal all the
characteristic features of a hypersurface and to adapt its ad-
vancing to the unknown function. Although the calculation
started by giving AdaptivSearch just the four points that limit
the definition area, the algorithm rapidly and unbiasedly
traces up the ditch and its fine contouration. The triangula-
tion shown in Figure 8 represents the state of refinement
after 200 measured nodes. The efficiency of the
AdaptivSearch algorithm is convincingly demonstrated by
the fact that the triangulation fully reflects the apparent de-
scription of the functional graph. Furthermore, even in the
numerically critical fields (dark blue areas in Figure 8), the

Figure 10c. Triangulation of the arbitrarily constructed model
function (example no. 4)  on the level of 100 calculated nodes.

the most intensive work. This discretization is particularly de-
tailed at the edges of the definition range since here the func-
tion values grow rapidly because of the square and fourth power
dependence of the variables. In contrast, AdaptivSearch does
not refine the region around x ≈ y ≈ 0 intensively, because the
function is relatively constant in this area (or, more humanly
spoken, “boring”) compared with the rest of the definition
area.

AdaptivSearch recognizes the symmetry of the function
(Figure 7, last picture), although this is not explicitely imple-
mented in the algorithm. Besides the high density of triangles
of those parts of the hypersurface that correspond to the points
of the crown, the triangulation of the intermediate areas along
the border lines is also interesting. It is clearly to be seen that,
because of the different curvatures of the dissected parabolic
curves mentioned above, the algorithm indeed triangulates
with a higher density in the y direction than in the x direction
(last picture in Figure 7).

2.  f (x; y) = ln ((1 – x )2 + 100 · ( y – x2 )2 + 0.001)
with x ∈ {–1:5; 1:5}, y ∈ {–0:5; 1:5}

also known as the Rosenbruck function [16]:
Morphologically conspicuous is the ditch, which like a

crescent–shaped riverbed runs through the definition area.
Whereas this ditch initially (x negative, y positive) is still rela-
tively broad and shallow, it gets narrow at its end (x positive,
y positive) and becomes distinctly deeper. In this region the
function starts to vary strongly from node to node: the ground
of the riverbed is no longer homogeneous, but partially very
deep craters are found to occur, which is clearly to be seen

Figure 11. Example function no. 5: The Müller-Brown
surface and the triangulation at a stage of 200 calculated
nodes.
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algorithm does not loose its stability. Even for a higher
number of calculated nodes (not shown), AdaptivSearch
“keeps in mind” and investigates the entire definition area
and does not get stuck in partial areas.

3.  f (x; y) = ln (x4 · y2 + 2 )
with x ∈ {–5:0; 2:0}, y  ∈€{0.0; 3:0}.

The series of purely analytical functions is closed by a
hypersurface in which the strongly curved and the planar
parts are clearly separated from each other. This is very nicely
elaborated by AdaptivSearch. The resulting surface and its
triangulation are depicted in Figure 9.

Chemical model surfaces

4. A model surface arbitrarily constructed for a likewise
imaginary chemical reaction system:

Even nowadays, experience and chemical intuition play
an important role in the computer chemical analysis of chemi-
cal processes. Still, by just relying on one's intuition, one
runs the risk of overlooking early interactions that may lead
to relevant reaction pathways. In order to avoid this, one
sometimes chooses the area to be probed larger than experi-
ence would suggest. Thus, one has to accept the fact that
possibly also those areas are expensively investigated that
are not actually relevant for the reaction considered. Our
arbitrarily constructed model surface represents such a case
for which, due to this precaution, the definition area was
chosen too large (Figure 10a). For this hypersurface, the math-
ematical equation reads:

E = exp (–x)(sin 2x · cos y + 1) – 0.025 (y – 4)2 + 0.05 exp(y)

Figure 10b shows the way how AdaptivSearch explores
the surface. After 25 nodes already, all essential characteris-
tics are apparent: 2 maxima, 2 minima, and 3 saddle points,
i.e. transition states. Hence, by using AdaptivSearch, one
can recognize very early which parts of the area are of inter-
est for the reaction.

At this point a scanning process as performed using
GridSearch would normally be stopped. Instead, a new search
would be started within a strongly reduced definition area
excluding the planar (“boring”) regions.

By contrast, there is no need for a AdaptivSearch run to
be interrupted since selectively only those partial areas are
further elaborated in which chemical interactions cause the
strongest contour changes, thus hinting at chemically inter-
esting parts of the hypersurface. Unexpected, but possibly
nonetheless existing energetic interactions in more planar,
“calm” areas would still not get lost and would likewise be
evaluated.

Figure 10c shows the triangulation after 100 nodes, the
hypersurface is portrayed as a colored contour plot.

5./6. Model surfaces containing one reaction path:
The model hypersurfaces described in the literature are

normally used as test hypersurfaces for novel reaction path
following algorithms. The definition areas of the functions
are adjusted such that only the essential feature, namely the
chemical reaction pathway, is mathematically modelled. For
our AdaptivSearch investigations, we have chosen two stand-
ard representatives: the Müller–Brown surface (example no. 5)
[17] and the Gonzales–Schlegel surface (example no. 6) [18].
Figures 11 and 12 show the results of the AdaptivSearch di-
rected investigation after 200 calculated nodes.

As clearly to be seen, AdaptivSearch is capable of elabo-
rating reaction pathways with particularly high accuracy. The
slopes that parallel the reaction pathways have more constant
gradients than the valley bottom and thus can be approximated
linearly by larger triangles.

Figure 12. Example function no. 6: The Schlegel-Gonzales
surface and its triangulation (200 calculated nodes).
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the curvature changes strongly. Due to its iterative execu-
tion scheme, it is possible for AdaptivSearch to inform the
user about the details of each refinement step: During the
investigation, the internal average error and the distribution
of the local errors on the definition area are quantified and
can be visualized continuously. AdaptivSearch can be stopped
at any time of the scanning process, and may be easily re-
started from the last point of interruption without loss of
data.

Thus, the various demands and expectations of compu-
ter chemists towards chemically relevant hypersurfaces are
ideally fulfilled by the AdaptivSearch algorithm.

• One obtains the gross topology of the hypersurface af-
ter only a few calculated nodes.

• Additionally, one can refine a hypersurface further –
even a hypersurface that has been obtained by conventional
GridSearch! – up to a defined accuracy with a minimum
number of nodes.

In computational chemistry, fields of application for
AdaptivSearch will mainly be the probing of energy poten-
tial surfaces, conformational analyses, and the calculation
of electrostatic potential molecular surfaces (EPM), as they
are widely required, e.g. in pharmaceutical research for the
determination of the interactions between a substrate and
the active site of an enzyme.

AdaptivSearch has already been realized for two-dimen-
sional cases, the implementation of treating three-dimen-
sional problems is drawing to a close. All program routines
are written in C using standard components. Thus, the pro-
gram will easily be ported to other UNIX platforms. Stable
und tested program versions exist under IRIX5.2 (Silicon
Graphics) and LinuX (UNIX similar operating system for
IBM compatibles distributed under the GNU Public License,
copyright by Linus Thorvalds).

Basically, AdaptivSearch was designed as a “black box”
algorithm that is entirely independent from the correspond-
ing measuring program. At this time, we have implemented
several interfaces to the most frequently used quantum chemi-
cal program packages such as VAMP5.5 [20], MOPAC6.0
[2], GAMESS [21], and GAUSSIAN92 [22].

Figure 13. The Ruedenberg function (example no. 4): The 3D
plot of the model surface and its triangulation after 150 nodes.

7. The Ruedenberg function [19]:
Like the Müller–Brown and the Schlegel–Gonzales sur-

faces, the Ruedenberg function is also an established model
function for testing novel reaction path finders. The equation
for the hypersurface reads:

E = ½ (xy2 y2 x + x2 + 2y – 3)

In this polynomial function, the highest powers are squares.
Since parabolic curves always have a constant 2nd derivative,
they have uniform curvature. It is small wonder that the trian-
gulation of the definition area is very homogeneous except
for the margins of the upper right quadrant.

One is nearly tempted to consider GridSearch as a special
case of AdaptivSearch for calm (“boring”) hypersurfaces. In-
deed, AdaptivSearch, with its remarkable property to approach
inhomogeneous areas selectively, cannot display this advan-
tage for such relatively homogeneous hypersurfaces. In the
Ruedenberg function all partial areas are of similar interest
for the algorithm. In this particular case, the use of GridSearch
would also be justified. On the other hand, it is the character-
istic strength of AdaptivSearch to elaborate that it is indeed a
uniform function – information that is avalaible only by
AdaptivSearch.

Summary and Outlook

We have shown AdaptivSearch to be a procedure that is capa-
ble of probing two–dimensional hypersurfaces of different
types. AdaptivSearch delivers reliable and exact results – re-
gardless whether the investigated problem is homogeneous,
i.e. exhibiting an uniform course of the function, or very
inhomogeneous, i.e. consisting of differently curved regions.
Especially for the latter cases, which occur mostly when in-
vestigating potential energy surfaces of chemical reactions,
AdaptivSearch predominantly probes those regions in which
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