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Abstract

AdaptivSearchs the first adaptive strategy based algorithm for the rational and economi-cal construction of n-
dimensional hypersurface&daptivSearctworks iteratively: At each step it parcels out the definition range into
several triangles, evaluates the worst according to a built—in error criterion, and refines the approximation to the
unknown function by choosing the barycenter of this partial area as the node to be calculated next. Based upon
the error criterionAdaptivSearctselectively approaches those parts of the hypersurface in which the curvature
exhibits the strongest changes. Some exampléslaptivSearctapplications for both analytical functions and
chemical model surfaces are given in order to demonstrate the behavior of the algorithm. These show its broad
applicability and the usefulness, especially for chemical problems.

Keywords: AdaptivSearchconstruction of hypersurfaces, adaptive humerical strategy, iterative algorithm, parallel comput-
ing, Delauney triangulation

struction of multidimensional hypersurface®m computer
Introduction simulations, the required calculation time is usually the limit-
ing factor.
Despite exponentially increasing computer resources and The quality of the approximation to the unknown n—di-
optimized software, there is a chronic shortage of CPU timenensional function depends on two factors: on the one hand,
— because simultaneously expectations and demands on ttiee exactness depends on the significance and quality of the
quality of the results and their presentation are also stronglgalculated function value for a particular “node”[1] required
increasing. Particularly, for scientific problems that dependfor the generation of the functiofThis, e.g. in the case of
on several parameters and that have to be solved by conhemical potential energy surfaces (PES), might be attained
by using a larger basis set in quantum chemical procedures.
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Figure 1: Three versions of GridSearch to go through the In this paper, we present a fundamentally novel proce-

definition area for the two-dimensional space defined by thelure, namedAdaptivSearchwhich is capable of adapting

parameters P1 and P2. itself iteratively to the problem. It selectively explores the
strategically important parts of the potential energy surfaces
preferentially. The AdaptivSearclalgorithm thus allows the

On the other hand, it is important how well the “ensemble”,most effective possible use of the given computational re-
i.e. the set of chosen points, represents the actual function. soyrces.

A current and pragmatical method for the generation of
such hypersurfaces is the commonly used “GridSearch” [2]
algorithm. In this procedure, the range of definition is ex-Fundamental principle and mathematical description of
plored byscanning along parallels of the coordinate axes inadaptivSearch
equidistant steps. GridSearch, which is very easy to imple-

ment algorithmically, generates a regular grid over the interywe have developed th&daptivSearchmethod for the fast
esting area and determines the function value at each lattiggd rational computation of multi-dimensional hypersurfaces
point (Figure 1). by an adaptive approach. During a typicelaptivSearch
The advantage of the procedure, to address the next nog@gn, the set of nodes of the problem domain already com-
to be measured rapidly with a minimum decision overhead, iputed is enhanced iteratively by calculating new nodes ac-
only relevant for problems for which the calculatory expensesording to a problem-specific error criterion. Within each
per calculated (or measured) node is very small. For nodegeration, a Delauney triangulation [5] of the existing set of

that consume a large amount of computational time, the strafodes is constructed. The error criterion can then be com-
egy even turns out to have grave disadvantages: &tdy  puted for each triangle.

having completed the scanning process does it become mani-

fest whether unnecessary calculations were performed for some

parts of the surface, orice versawhether other parts were The triangulation approximation problem (TAP)
not suficiently scanned.

In every day computer—chemistry, the demands on potenthroughout this work the task of generating n-dimensional
tial energy surfaces (PES) may vary greatly, depending on theypersurfaces will be treated as an iterative approximation
particular problem: Whereas in some cases only energetic mproblem that can be stated in a general way as follows:
nima onthe surfacei.e. molecular conformations) are im- Letf: Q — R be a function oh variablesx , ...x in the
portant for further investigations, it is, in other cases, only they-dimensional problem domafh The triangulation approxi-

saddle pointsig. the transition states between two stablemation problem (TAP) is to determine a set of interpolation
ground state geometries) that are of interest. Still more de-

: ; . X O0Q i latiorT h ,
mandingly, for the calculation of nuclear wave functions [3] anodes X ) and' a tr'langu atio . based on t 'ese hodes
highly accurate PES is necessary. so that the piecewise linear, continuous approximation func-

In the literature [4], there is so far no specific method fortion g with [ :
the construction of PES that delivers a surface with a pre—,_\ ' /_\ o o
defined exactness based on a minimum number of measureQ(XJ) = f(xi) is an approximation fof minimizing the

nodes, or, alternatively, that allows a stepwise enhancemelaﬁobaﬂ error with respect to a certain error norm.

of precision at any time of the process, either for parts or for Hereby the triangulatior of Q is defined as a set of
the whole area of definition, relying on the already determineqiriang|es underlying two conditions [6]:

points.

1. Within each pair of triangles only one edge or one
node overlaps.
2. The union of all triangles equdls
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A practical error norm definition ise.g. the L? norm, native, a larger set of nodes from a prior computation may be
where [[(11 f — g )? [Ttx is minimized during the iterative used évaluation recycling
TAP solution process. During the main loop (lines 03-11), at first the new nodes
are evaluated, which normally takes the largest part of the
computational time. After this step (lines 04-06), the actual
Assumptions and restrictions AdaptivSearchstrategy is executed. For this purpose, a
Delauney triangulation is constructed to obtain an approxi-
Function f has two continuous derivativasis can be as- mation for f based onlJ, P, , which is the set of all nodes
sumed for physical reasons, as well as from a correct choiceomputed so far. The Delauney triangulatibis a triangula-
of the parametric space. tion (as defined above) based on an additional geometric con-
Two-dimensional problemalthough theAdaptivSearch  dition [5] concerning the numerical stability.
method will work for approximation problems independent  In order to obtain a list of nodes to be computed next, the
of their spatial dimension, the following explanations will triangles have to be sorted according to an error criterion.
be based on the two-dimensional case in order to keep tHEhis criterion is applied to each triangle to evaluate the qual-
algorithm description simple and understandable. Some conity of the current approximation df(line 08; for details, see
ments on problems of more than two dimensions will beparagrapH'Error criteria” ).
given in the paragraptulti-dimensional problems” As a last step during each iteration, the barycenters of the
Costly function evaluatioriThe approximation of func- worst triangles are chosen as new nodes (line 09). In order to
tion f is necessary because of the computational expense ehsure consistency at problem domain boundaries, additional
evaluating individual values df . Taking this assumption new nodes are generated at the boundary edge midpoints of
into account, a small fraction of this computational time carall chosen triangles.
be used for thddaptivSearctstrategy itself. Finally, the next iteration begins with the computation of
all new node#_, . The algorithm ends as soonfas empty,
i.e.when no further triangles are chosen or the upper limit of
Algorithmic overview nodes has been reached.
The AdaptivSearchmethod is based on a triangulation
Solving the TAP withAdaptivSearclis basically an iterative  discretization, which is similar to well-knovimite—element
method, with the number of nodes increasing during the itmethods used for the solution of partial differential equation
eration process. Within each iteration, a Delauney triangulatiproblems (for general introductions, see [7, 8]; for an applica-
on [5] of the existing set of nodes is constructed. A localtion in the computational chemistry field, see [9]). The kind
error criterion is then used to find the nodes to be evaluatedf adaptive refinement being applied in each of the two meth-
next. Scheme 1 describes tAelaptivSearchalgorithm in  ods, however, differs in its triangulation lifetime: during adap-
more detail. tive finite-element computations [10], a sequence of triangu-
In the case of a rectangular problem domaé 4 two- lations is constructed by refinement of certain triangles from
parameter problem), the starting set (line 01) may contaithe previous, coarser mesh. Because of the comparatively low
only the four nodes in the corners of the domain. As an altereomputational effort per node during the iteration scheme, it
is necessary to reuse existing grids. Thus, the majority of topo-
logical information describing the grids can be kept during
Scheme 1:Description of the AdaptivSearch execution the computation process. Wistdaptiv-Searchthe computa-
scheme in detail tional time per node is much higher, therefore one can afford
to create all triangulations from scratch. Hence, in each
AdaptivSearcliteration the optimal triangulation can be used.

Algorithm AdaptivSearch
. . Error criteria

01: Determine set of starting nodes
025 SEt, iteration courit= 0 Figure 2 shows the two main strategic aspectaaéptiv-
03: WhileP; # [ " Search The local error criterion is applied to each element
04: For eaclx O P, of the triangulation as a measure for the local quality of the
05: Computef(x) approximation. Afterwards, all elements are sorted according
06j End For . . to this local quality measure. Finalthie global strategyde-
07: Create triangulatiof, on LI, cides how many new nodes will be chosen, starting from the
08: Compute local errors on top of the sorted list.
ng Deterlmme'se'g Ef,”eW nodes, These two aspects are mutually dependent because they
10: Next iterations =1 + 1 alternate during the iteration process. For a wide range of TAP
11: EndWhile

problems (especially for those fromthe field of computational
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can be used in order to adjust the necessary degree of
parallelism.
3. Task parallelism: For each single node, two or more
ocal error evaluations may be computed with slightly different
starting molecule geometries. This can be used for han-
dling anomalies which occur when modeling high—di-
mensional problems with low—dimensional parameter
sets [12]).
) . . . . All three approaches maybe used simultaneously for dis-
Figure 2: Schematic outline for generating the sorted list of iy ted computations in a typical computer center environ-
“worst” triangles; the user can determine how many triangles yani. Thus, the centraldaptivSearcistrategy manages the
are to be refined. solution process by exploiting the power of high perform-
ance computing hardware combined with fast network con-

chemistry presented here), the following strategy has provedections.
to be most effective and generally applicable:

worst triangle

global strategy

best triangle

Local error criterion: Multi-dimensional problems
For each triangld the local error is computed using the
neighbor gradients]j with j O nb ,wherenb is the set of ~Most parts of the algorithm described above can be applied
neighbors ofi. With A(i) being thexy-projected volume of easily to the solution of problems in more than two spatial
trianglei, the local error is given by dimensions. Only the postprocessing facilities and the trian-
gulation algorithm will not be usable for higher dimensional
N T "Di _Dj" problems.Although visualization of solutions in three and
€IM0local (') = TA(') more space dimensions is an important issue, it will not be
considered further in this paper, but will be described later.
Triangulation algorithms for 3D data may be adapted
from well-known grid generation research from Computa-
Global strategy: _ tional Fluid Dynamics. In this casetrahedraare created
Only thg triangle with the worst local error is (.:hosen'for thecovering the complete 3D problem domain.
generation of the next nodes. Its barycenter is the first new prgplems in four and more space dimensions requiring

node. If the edge of the corresponding triangle is a boundaryygitional efforts for the triangulation [11] and visualiza-
of Q, its edge mid points are chosen as additional further nodegg, gre subject to current research.

Parallel Processing Application of the algorithm

The currentAdaptivSearctprototype consequently has been pq mathematically depicted abovAdaptivSearchdiffers
implemented in a modular manner using several standard Soffjstinctly from other methods: For the search of new nodes,
ware components. Furthermore, embedding it into a typica} neither follows an anticipated and thus rigid strategy such
UNIX-compatible environment allows the usage of suitablease_g_fOr “GridSearch”, nor is the decision which node is to
network features inc!uding c'omplete support for utilizing het-pe calculated next left to chance as is typical for the
erogeneous computing environments. _ RandomSearch approach [13]. Per each iteration step,
Three different scenarios representing possible types odgaptivSearchdiscretizes the definition area into polyhe-
parallelism may be used without modification of gra) partial areas according to the already calculated nodes
AdaptlySearch _ _ _and subsequently evaluates each of those polyhedra relative
1. F|ne-'gra|n parallehsm:'CIusters of'workstatlons as availyg the neighboring areas using the “gradients difference cri-
able in most computational chemistry labs may be usegerion” (see*Error criteria” ). The specific shapes of these
for the evaluation of single nodes: Programs with highlypartial areas are triangles for two-dimensional space, tetra-
parallellized subroutinese(g. for the solution of = heqra for three-dimensional space, etc. According to its defi-
eigenvalue problems or for the filling of large matrices, nition, the error criterion can be interpreted as a sort of dis-
etc.) serve as black-box evaluators for nodes instead Qfrete 2nd average derivative. Thus, with each refinement
the sequential program versions on one single processiep, AdaptivSearcirapidly elaborates more and more de-

Sor. . _ . tailed information of the behavior of the unknown
2. Node parallelism: The evaluation of aII'nodes in the CUrhypersurface by advancing preferentially into those areas in
rent setF, can be tackled com-pletely in parallhk  \yhich the curvature of the hypersurface changes strongly.

gorithmic Overview; line 04-06). Different global strat- | jkewise, from small amounts of local erroflaptivSearch
egies (see paragraph above) for determining thefsets
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is capable of recognizing in which parts of the definitionfrom which, by simple transformations (g In(error_ ),
range the gradient of the energy function is relatively conq - #n n),
stant and where consequently the function may feasibly be
described by a piecewise linear approximation.
In order to demonstrate the scope and limitations of In(error,,,) =alnn+b
AdaptivSearchwe have chosen seven analytical model func- alhn+b _
tions with different properties and have prokied scanned, B
them usingAdaptivSearchExemplarily for the first three =P = &
chosen functions (examples 1-3‘Analytical functions”),
we focus on the general behavioral patterns and characteri
tics of the algorithm. Ad\daptivSearctwas initially devel-
oped primarily for the investigation of chemically relevant
potential energy surfaces (PES), we wish to show the broad error,, = e+t
applicability of this procedure for the solution of chemical
problems exemplarily using the functional model surfaces 4-£4n pe obtained. Figure 3 illustrates this relation for the ex-
(“Chemical model surfaceg” _ “ample function no. 1. The coefficients a andé,the gradi-
~ By adding the error values over all partial areas and digpt of the straight line and the intersection point with the y-
viding by the number of triangles, one obtains a value for,is can be read from a regression line, which can be ob-
the average error of the approximation, in the following de4ineq after calculation of only a few (15-20) nodes. This al-
noted as erravr. With increasing number of nodes, the qual- |o\ys the straightforward possibility of easily predicting the
ity of the approximation to the function is enhanced and thé, mper of further iteration steps required to reach a desired
errorvr decreases. Interestingfpr AdaptivSearctthe de- gy ality of the hypersurface investigated relative to the built—
crease of errgr can be described by a polynomial relation. i, error criteria.
This becomes evident when plotting erraagainst the We show by means of the 7 example functions how well
number of calculated nodes in a doubly logarithmic diagramynis pyilt—in error measurement corresponds to the real error
which results in a straight line that may be formulated as 4 approximation. For this purpose, it is useful to regard the
difference volume between the approximation and the actual
p=a-q+b; function as a measure for the actual error, which is denoted as
errowvol in the following. When errgr is plotted against the
number of calculated points in the manner described above,
astonishingly the following empirical relation was found (see

error,, =€

ﬁw_e hyperbolic relation

81 In(errorav) Table 1.Gradients of the regression lines obtained by plotting
7L In(errorw) error__and error_ against the number of calculated nodes n
- in a doubly logarithmic diagram. Whereas the absolute values
6 B of the gradients expressing the expenditure for AdaptivSearch
5 F may vary greatly, the difference between respective values (last
4 i column) is constant.
3 -
2 I gradients
1 B function no. error, . error A
O -
L | | | 1 -1.748 -1.264 0.484
2.5 35 4.5 55 6.5 2 -1.357 -0.876 0.481
Inn 3 -1.503 -0.997 0.506
4 -1.542 -1.058 0.484
5 -1.619 -1.080 0.539
, i . i 6 -1.545 -1.034 0.511
Figure 3. Plotting the error(avr) value (full line) against 7 -1.611 -1.071 0.540
the number of calculatednodes one gets a straight line. This
is shown exemplarily for the example function no. 1. When
the error(vol) is plotted in the same way (dotted line), one M = 0.506

also gets a straight line, but with a slightly smaller gradient.




166

J. Mol. Model.1995,1

Figure 3, for a complete list of all example functions, see
Table 1).

A
error,., = constJf*° —
wheren denotes the number of calculated nodes aiglthe
gradient of the regression line from the doubly logarithmic
diagram of errqy .
For the deduction of thiong. factor, which is heeded for
the calculation of thabsoluteamount of the errgr, we start
with formula (1):
erote = V() = Vaxae = consOf™®® (1)
A
V (n) is the volume at the actual approximation level. In order -
to eliminate the exact volumeg,_, which is unknown in real
cases, we differentiate (1) lmyand get:
or
d _ d +0.5
E[\/(n) ~Viacd = = (constDr?1 )
dv(n -
‘J —O( = constl{ a+ 0§ 0A™%°
dn
v(n)-Vv(n+an _ =
7 "/l =constl{ at 0.5 0R°
0 ‘ A [ a+08) @
Figure 5. Subdivision of the local area elements delivered
e [ example function no. 1 by Grid Search quding to two different (sinpe concave/
5 L convex) approximations to the unknown function.
S
ST
= S ‘ By the last step, the infinitesimal derivative is converted
g 2+ ‘ - ‘1‘ to a discrete one, which is accessible at any time of an
= 1L , ) AdaptivSearctrun. Again by plotting the term on the left
i < ol ‘,' side against the numer of calculated nodes (shown for ex-
E L ’ h‘”‘ ample function no. 1 in Figure 4) in a doubly logarithmic
= | ” 4\“‘ ‘1‘ diagram, one can extract the missing factor.
s 2r ’ \” ‘ Thus at a very early point of the investigation this ap-
=3r f proach allows a concrete prediction of theexpenditurerequired
—4 for AdaptivSearctior the exploration of the function up to a
5L | | | needed or defined accuracy — an inestimably valuable help
2.5 35 4.5 5.5 6.5 for the user, especially for costly nodes.
Inn Although in the following examples the efficiency of

Figure 4.In order to obtain information on the absolute error

AdaptivSearchs discussed relative to that of the conven-
tional GridSearch method, a direct comparison of the two
algorithms is not possible, as seen for the two aspects de-

of the approximation, one has to plot the discrete derivativescribed below, which constitute both distinct arguments for
[see equation (2)] against the number of calculated nodes idaptivSearchand against GridSearch.

a doubly logarithmic diagram. This simultaneously again
proves the polynomial relation between error(vol) and the
calculated number of nodes.

1. By the scanning process, GridSearch does not deliver
direct and unambiguous information about the ensemble of
elemental areas. This can easily be explained for two—dimen-
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100 + 44 = 144 nodes 12 x 12 = 144 nodes

Figure 6. Applying GridSearch, one obtains totally different treated identically. Consequently, this already existing lattice

discretenesses of the definition area, although an identicatan be further refined only by a fixed (and thus rigid) quantity

number of nodes have been calculated (here 144). Leftof additional nodes. If, nonetheless, bysaposteriorirefine-

Arbitrarily refinement of a 10 x 10 lattice by additional 44 ment of the discreteness less nodes are chosen, this results in

nodes; right: a regular grid of 12 x 12 nodes. an arbitrarily inhomogeneous subdivision of the definition area
(Figure 6). Furthermore, the discreteness of a definition area,
e.g.144 nodes by adding 44 additional nodes to a preformed

sional space: The smallest. fundamental spatial elements 10 x 10 lattice, looks completely different from a lattice that

as obtained by GridSearch are quadrangles (frequentljas been calculated from 12 x 12 nodes from the beginning

squares), as defined by the 2D projection of four directly(Figure 6).

neighboring nodes of the surface. Still, since four nodes in It is already clear at this point thatdaptivSearctwill by

the 3D space do not unambiguously define a plane, the quade means be restricted to the solution of chemical problems,

rangles have to be subdivided into two triangles each. A¥ut should also be widely applicable to the investigation of

Figure 5 illustrates, this can be done in two ways (that areompletely different surfaces.

degenerate in the 2D projection), which, howerey de-

liver dramatically different approximations to the functions.

Concretely speaking, the upper solution in Figure 5 (ifAnalytical functions

evaluated from above) would give rise to a convex curvation

of the approximation surface, whereas the lower one would. f (x; y) = x2 - y* with x 0 {-3:0; 3:0}, y 0O {-3:0; 3:0}:

give a concave course for this local area element.

Alternatively, by application of an interpolation algorithm By this exemplary function, we illustrate exhaustively how

[14] to the resulting grid or by fitting the set of all nodes to a typicalAdaptivSearchiun looks in practice and what profit

a spline function [15], it is also possible to effect an un-a user can draw from the data and the additional information

equivocalj.e. unique (unambiguous), record from all nodes that the AdaptivSearctprogram package delivers during the

calculated so far. However, one risks ending up with a missearch procesVhile Adaptiv-Searchis directing the corre-

leading, since arbitrary interpretation of the ensemble as otsponding calculating program to determine the value of the

tained by GridSearch. next node, the available data are evaluated and stored as data
This is due to unwanted fluctuations between the datdiles. The filed information can be visualized graphically us-
points or inadequate accuracy of the approximation. ing standard visualization programs such as GNUPLOT,

2. For the GridSearch strategy, the calculatory expense
is set from the beginning of the calculation by the definition
of the number of the scanning steps in each directiora An
posteriori increase of exactness by including further nodesrigure 7. (page 8 and 9)Evolution of the approximation
is problematic. This can meaningfully only be done by aperformed by AdaptivSearch to the example function no. 1;
renewed regular subdivision of the established grid, sincgeft side: 3D plot;
for the GridSearch algorithm all partial areas have to beight side: triangulation of the actual approximation state.
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Figure 8. A colored contour plot of the Rosenbruck function Figure 10a. An arbitrary chemical model function
(example no. 2) and the AdaptivSearch triangulation afte(example no. 4)
200 calculated nodes.

AXUM, or NCSA—-Collage, so that the user can assess of theodes already calculated or measured. Figure 7 (right side)
actual state at any point of the process. shows the triangulation at the corresponding state of the ap-
The shape of the function corresponds to that of a fourproximation. After a small number of measured nodes
pointed crown. Due to the even exponents of the parameterq20-25), the gross morphology of the surface is evident, the
andy, the function is symmetric both relative to theand to  subsequent iteration steps only further “polish” the functional
theyzplane, but not relative to the bisectors of the quadrantgyraph.
When dissecting the function to the axes in parallel, one ob- From the triangulation pattern of the last approximation
tains parabolic curves, which, because of/tlierm, are more  step it becomes evident which partial areas have required
strongly curved and become steeper than those that run in the
x direction. Figure 10b. (next page)Evolution of the approximation to
Figure 7 (left side) illustrates the development of thethe arbitrarily constructed chemical model function
AdaptivSearchapproximation to the function based on the (example no. 4).
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Figure 9. Left: The “genuine” example function no. 3; right:
The triangulation of the definition area at the stage of 200
points.
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Figure 10c.Triangulation of the arbitrarily constructed model
function (example no. 4) on the level of 100 calculated nodes.

the most intensive work. This discretization is particularly de-
tailed at the edges of the definition range since here the func-
tion values grow rapidly because of the square and fourth power
dependence of the variables. In contrastaptivSearctdoes

not refine the region around= y = 0 intensively, because the
function is relatively constant in this area (or, more humanly
spoken, “boring”) compared with the rest of the definition

area.

AdaptivSearctrecognizes the symmetry of the function
(Figure 7, last picture), although this is not explicitely imple-
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mented in the algorithm. Besides the high density of triangles

of those parts of the hypersurface that correspond to the points _ )
of the crown, the triangulation of the intermediate areas alonfigure 11. Example function no. 5: The Mdiller-Brown

the border lines is also interesting. It is clearly to be seen thasurface and the triangulation at a stage of 200 calculated

because of the different curvatures of the dissected parabolitodes.
curves mentioned above, the algorithm indeed triangulates
from the dark blue spots in the colored contour plots (Fig-

with a higher density in thedirection than in the direction

(last picture in Figure 7).

2.

also known as the Rosenbruck function [16]:

fo;y) =In((1—x)*+100 - (y—»)*>+ 0.001)
with x 0 {-1:5; 1:5}, y O {-0:5; 1:5}

ure 8).

This function is a hard and thus ideal test case for any
algorithm that has particularly been trained to reveal all the
characteristic features of a hypersurface and to adapt its ad-
vancing to the unknown function. Although the calculation

started by givind\daptivSearclust the four points that limit

Morphologically conspicuous is the ditch, which like a the definition area, the algorithm rapidly and unbiasedly
crescent—shaped riverbed runs through the definition areaaces up the ditch and its fine contouration. The triangula-

Whereas this ditch initiallyx(negativey positive) is still rela-
tively broad and shallow, it gets narrow at its engdsitive,

tion shown in Figure 8 represents the state of refinement

after 200 measured nodes. Thefigency of the

y positive) and becomes distinctly deeper. In this region thezdaptivSearchalgorithm is convincingly demonstrated by

function starts to vary strongly from node to node: the groundhe fact that the triangulation fully reflects the apparent de-
of the riverbed is no longer homogeneous, but partially veryscription of the functional graph. Furthermore, even in the
deep craters are found to occur, which is clearly to be seemumerically critical fields (dark blue areas in Figure 8), the
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algorithm does not loose its stability. Even for a higher 1.5
number of calculated nodes (not showApaptivSearch
“keeps in mind” and investigates the entire definition area
and does not get stuck in partial areas.

3. focy)=In(x*-y2+2) 05
with x O {-5:0; 2:0}, y 0€0.0; 3:0}.

The series of purely analytical functions is closed by a 0
hypersurface in which the strongly curved and the planar
parts are clearly separated from each other. This is very nicely -~
elaborated byAdaptivSearchThe resulting surface and its 055

triangulation are depicted in Figure 9.

Chemical model surfaces

1.5F . . : -

4. A model surface arbitrarily constructed for a likewise -3 -2 -1 0 1 2 3
imaginary chemical reaction system:

Even nowadays, experience and chemical intuition play
an important role in the computer chemical analysis of chemi-
cal processes. Still, by just relying on one's intuition, one
runs the risk of overlooking early interactions that may lead
to relevant reaction pathways. In order to avoid this, one
sometimes chooses the area to be probed larger than experi-
ence would suggest. Thus, one has to accept the fact that N
possibly also those areas are expensively investigated that "
are not actually relevant for the reaction considered. Our o~
arbitrarily constructed model surface represents such a case
for which, due to this precaution, the definition area was
chosen too large (Figure 10a). For this hypersurface, the math-
ematical equation reads:
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Figure 10b shows the way hoddaptivSearctexplores Figure 12. Example function no. 6: The Schlegel-Gonzales
the surface. After 25 nodes already, all essential characterissurface and its triangulation (200 calculated nodes).
tics are apparent: 2 maxima, 2 minima, and 3 saddle points,
..e. transition states. Hence, by usikglaptivSearchone 5 /6. Model surfaces containing one reaction path:
can recognize very early which parts of the area are of inter- The model hypersurfaces described in the literature are
est for the reaction. normally used as test hypersurfaces for novel reaction path
At this point a scanning process as performed usingollowing algorithms. The definition areas of the functions
GridSearch would normally be stopped. Instead, a new searglie adjusted such that only the essential feature, namely the
would be started within a strongly reduced definition areachemical reaction pathway, is mathematically modelled. For
excluding the planar (“boring”) regions. our AdaptivSearclinvestigations, we have chosen two stand-
By contrast, there is no need foAdaptivSearchiun to  ard representatives: the Miiller—Brown surface (example no. 5)
be interrupted since selectively only those partial areas am 7] and the Gonzales—Schlegel surface (example no. 6) [18].
further elaborated in which chemical interactions cause thgjgures 11 and 12 show the results of AuaptivSearchi-
strongest contour changes, thus hinting at chemically intefrected investigation after 200 calculated nodes.
esting parts of the hypersurface. Unexpected, but possibly as clearly to be seemydaptivSearchis capable of elabo-
nonetheless existing energetic interactions in more planafgting reaction pathways with particularly high accuracy. The
“calm” areas would still not get lost and would likewise be s|opes that parallel the reaction pathways have more constant

evaluated. gradients than the valley bottom and thus can be approximated
Figure 10c shows the triangulation after 100 nodes, théinearly by larger triangles.

hypersurface is portrayed as a colored contour plot.
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_45 -30 15

Figure 13. The Ruedenberg function (example no. 4): The 3Cthe curvature changes strongly. Due to its iterative execu-
plot of the model surface and its triangulation after 150 nodestion scheme, it is possible fétdaptivSearcho inform the
user about the details of each refinement step: During the
investigation, the internal average error and the distribution
7. The Ruedenberg function [19]: of the local errors on the definition area are quantified and
Like the Muller—Brown and the Schlegel-Gonzales sur-can be visualized continuoushdaptivSearclan be stopped
faces, the Ruedenberg function is also an established modei any time of the scanning process, and may be easily re-
function for testing novel reaction path finders. The equatiorstarted from the last point of interruption without loss of

for the hypersurface reads: data.
Thus, the various demands and expectations of compu-
E=%KkPYyx+xX+2y—3) ter chemists towards chemically relevant hypersurfaces are

ideally fulfilled by the AdaptivSearctalgorithm.
In this polynomial function, the highest powers are squares. ¢ One obtains the gross topology of the hypersurface af-
Since parabolic curves always have a constant 2nd derivativtgr only a few calculated nodes.
they have uniform curvature. It is small wonder that the trian- « Additionally, one can refine a hypersurface further —
gulation of the definition area is very homogeneous excepgven a hypersurface that has been obtained by conventional

for the margins of the upper right quadrant. GridSearch! — up to a defined accuracy with a minimum
One is nearly tempted to consider GridSearch as a speciaimber of nodes.
case ofAdaptivSearchor calm (“boring”) hypersurfaces. In- In computational chemistry, fields of application for

deedAdaptivSearchwith its remarkable property to approach AdaptivSearctwill mainly be the probing of energy poten-
inhomogeneous areas selectively, cannot display this advatial surfaces, conformational analyses, and the calculation
tage for such relatively homogeneous hypersurfaces. In thef electrostatic potential molecular surfaces (EPM), as they
Ruedenberg function all partial areas are of similar interesére widely requirede.g.in pharmaceutical research for the
for the algorithm. In this particular case, the use of GridSearchetermination of the interactions between a substrate and
would also be justified. On the other hand, it is the charactetthe active site of an enzyme.
istic strength ofAdaptivSearcho elaborate that it is indeed a AdaptivSearcthas already been realized for two-dimen-
uniform function — information that is avalaible only by sional cases, the implementation of treating three-dimen-
AdaptivSearch sional problems is drawing to a close. All program routines
are written in C using standard components. Thus, the pro-
gram will easily be ported to other UNIX platforms. Stable
Summary and Outlook und tested program versions exist under IRIX5.2 (Silicon
Graphics) and LinuX (UNIX similar operating system for
We have showrdaptivSearctio be a procedure that is capa- IBM compatibles distributed under the GNU Public License,
ble of probing two—dimensional hypersurfaces of differentcopyright by Linus Thorvalds).
types.AdaptivSearcrdelivers reliable and exact results — re-  Basically, AdaptivSearclwas designed as a “black box”
gardless whether the investigated problem is homogeneouslgorithm that is entirely independent from the correspond-
i.e. exhibiting an uniform course of the function, or very ing measuring program. At this time, we have implemented
inhomogeneous,e. consisting of differently curved regions. several interfaces to the most frequently used quantum chemi-
Especially for the latter cases, which occur mostly when incal program packages such as VAMPS5.5 [20], MOPAC6.0
vestigating potential energy surfaces of chemical reactiond2], GAMESS [21], and GAUSSIAN92 [22].
AdaptivSearcipredominantly probes those regions in which
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